The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 X 0 0 2 0 X X X 1 1 X 2 0 1
0 X 0 0 0 0 0 0 0 0 2 X X X+2 0 X+2 X+2 0 X X X+2 X+2 X X 2 2 0 X 2 0 X X+2 X+2 X X+2 2 X X X 0 2 2 X+2 2 X X 2 0
0 0 X 0 0 0 0 0 0 0 X+2 2 X X X X 0 X 0 X+2 X+2 2 X 2 X 2 2 2 X+2 X+2 X X+2 X 2 X X X 2 0 X X X 0 X X X+2 0 X+2
0 0 0 X 0 0 0 X X+2 X X X+2 0 X 2 0 X+2 X+2 X+2 2 X+2 2 2 X 0 X X 0 2 2 2 X 2 2 0 2 X X 2 2 0 X+2 0 0 X 0 0 X+2
0 0 0 0 X 0 X X X 2 X X X 2 2 X+2 X+2 2 2 0 X+2 X+2 0 2 X+2 0 X+2 0 X 2 X+2 0 X+2 X X X+2 X X 0 2 2 0 0 X 2 2 X X
0 0 0 0 0 X X 2 X+2 X+2 X X X+2 0 X 2 2 2 X+2 2 X+2 0 X+2 0 0 0 X X X X 2 0 X X+2 2 X+2 X+2 X 2 X+2 X 0 X+2 X+2 X 2 2 X+2
0 0 0 0 0 0 2 2 2 2 2 2 2 0 2 0 0 0 2 0 2 0 0 2 2 2 0 2 0 0 2 2 0 2 0 2 0 0 2 2 0 2 0 2 2 2 2 0
generates a code of length 48 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 38.
Homogenous weight enumerator: w(x)=1x^0+140x^38+511x^40+36x^41+871x^42+172x^43+1230x^44+596x^45+2196x^46+1212x^47+2492x^48+1260x^49+2021x^50+644x^51+1449x^52+156x^53+731x^54+20x^55+401x^56+176x^58+53x^60+9x^62+6x^64+1x^72
The gray image is a code over GF(2) with n=192, k=14 and d=76.
This code was found by Heurico 1.16 in 13.2 seconds.