Skip to content

Statistical bulletin: Retail Sales, March 2014 This product is designated as National Statistics

Released: 25 April 2014 Download PDF

Key Points

  • In March 2014, the quantity bought in the retail industry increased by 4.2% compared with March 2013 and by 0.1% compared with February 2014. The quantity bought also increased in Q1 2014 compared with Q1 2013, by 3.8%. This continues a pattern of year-on-year growth since early 2013.
  • Non-food stores saw the highest year-on-year increase (9.6%) since April 2002. This may partly reflect the negative effect of the very cold weather a year earlier, which was the second coldest March on record, in contrast to the warm weather in March 2014. Food stores, however, saw the largest year-on-year decrease (2.3%) since April 2013 (2.9%).
  • In March 2014, the amount spent in the retail industry increased by 3.9% compared with March 2013 and by 0.3% compared with February 2014. Non-seasonally adjusted data show that the average weekly spend in the retail industry in March 2014 was £6.7 billion compared with £6.6 billion in March 2013 and £6.5 billion in February 2014.
  • Average prices of goods sold in March 2014 showed deflation of 0.5%; fuel once again provided the greatest contribution, falling by 5.8%. These data are consistent with the Consumer Prices Index (CPI) which was published on 15 April 2014.
  • The amount spent online increased by 7.1% in March 2014 compared with March 2013 and by 1.4% compared with February 2014.

Additional Information

This bulletin presents estimates of the quantity bought (volume) and amount spent (value) in the retail industry for the period 2 March 2014 to 5 April 2014. Unless otherwise stated, the estimates in this release are seasonally adjusted.

Users are reminded that the figures contained within this release are estimates based on a monthly survey of 5,000 retailers, including all large retailers employing 100 people or more. The timeliness of these retail sales estimates, which are published just three weeks after the end of each month, makes them an important early economic indicator. The industry as a whole is used as an indicator of how the wider economy is performing and the strength of consumer spending.

Key Figures

Table 1: All Retailing, March 2014 (seasonally adjusted percentage change)

  Most recent month on a year earlier Most recent 3 months on a year earlier Most recent month on previous month Most recent 3 months on previous 3 months
Amount spent (Value)  3.9 3.7 0.3 0.4
Quantity bought (Volume)   4.2 3.8 0.1 0.8
Value excluding automotive fuel 4.7 4.6 0.0 0.5
Volume excluding automotive fuel   4.2 4.2 -0.4 0.7

Download table

At a Glance

  • In March 2014, the quantity bought in the retail industry (volume) increased by 4.2% compared with March 2013. 

  • The amount spent (value) increased by 3.9%. 

  • In March 2014, non-seasonally adjusted data show that the prices of goods sold in the retail industry (as measured by the implied price deflator) decreased by 0.5%.

  • More information on how the implied price deflator is calculated can be found in section 3 of the background notes.

 

Economic Context

To enable a comparison of change, Figure 1 show the quantity of goods bought in the retail industry (all retailing sales volumes) and the amount spent (all retailing sales values), as indices referenced to 2010.

Figure 1: All Retailing seasonally adjusted sales volumes and values

Figure 1: All Retailing seasonally adjusted sales volumes and values

Download chart

Prior to the 2008/09 downturn, both the quantity and the value of retail sales grew steadily. Between January 2005 and January 2008, retail sales were supported by growing real household incomes. As average weekly earnings (AWE) increased more rapidly than the consumer price index (CPI) households consumed more retail goods – the quantity of retail sales (including fuel) growing by 7.8%. At the same time the value of retail sales increased by 11.7%, reflecting price increases over this period.

Between January 2008 and January 2013 (the area shaded in grey) the volume of retail sales was broadly flat while the value of retail sales continued to grow, increasing by 11.9%.  This reflects the extent to which prices grew following the onset of the economic downturn, CPI having increased by 17.9% over this period, which had a negative effect on household real earnings.

Further analysis on the recent trend of real wages and potential causes.

However, since the start of 2013 growth in volume terms has increased noticeably. In the 14 months to March 2014, the volume of retail sales increased by 5.5%, while inflation has slowed for six successive months - CPI growing by just 1.6% in the year to March 2014. While at the same time, wages have begun to see signs of growth implying an easing in the further deterioration of household real earnings, albeit still below its pre-downturn level.

Contributions to Growth

The retail industry is divided into four retail sectors:

  • Predominantly food stores (e.g. supermarkets, specialist food stores and sales of alcoholic drinks and tobacco);

  • Predominantly non-food stores (e.g. non-specialised stores, such as department stores, textiles, clothing & footwear, household goods and other stores);

  • Non-store retailing (e.g. mail order, catalogues and market stalls); and

  • Stores selling automotive fuel (petrol stations).

In March 2014, for every pound spent in the retail industry:

  • 42 pence was spent in food stores;

  • 41 pence in non-food stores;

  • 6 pence in non-store retailing; and

  • 11 pence in stores selling automotive fuel.

Using these as weights, along with the year-on-year growth rates, we can calculate how each sector contributed to the total year-on-year growth in the quantity bought.

Figures 2 and 3 show the contribution of each sector to the quantity bought (volume) and amount spent (value) in retail between March 2013 and March 2014.

Figure 2: Contributions to year-on-year volume growth from the four main retail sectors (March 2014 compared with March 2013)

Figure 2: Contributions to year-on-year volume growth from the four main retail sectors (March 2014 compared with March 2013)

Download chart

In March 2014, three out of the four main retail sectors (petrol stations, non-food stores and non-store retailing) saw an increase in the quantity bought (volume).  The largest contribution came from the non-food stores sector.

Figure 3: Contributions to year-on-year value growth from the four main retail sectors (March 2014 compared with March 2013)

Figure 3: Contributions to year-on-year value growth from the four main retail sectors (March 2014 compared with March 2013)

Download chart

In March 2014, three out of the four main sectors (food stores, non-food stores and non-store retailing) contributed to the increase in amount spent (value).  The largest contribution came from the non-food stores sector.

Analysis of spending in textile, clothing & footwear stores and household goods stores

Within the predominantly non-food stores industry two notable areas of growth were textile, clothing & footwear and household goods stores. 

In March 2014, the quantity bought in textile, clothing & footwear stores increased by 7.1% compared with March 2013 and by 3.1% compared with February 2014; this is the largest year-on-year increase since April 2010 (7.3%) and the largest month-on-month increase since April 2011 (5.7%).  The amount spent increased by 7.3% year-on-year and by 4.3% month-on-month.

Feedback from clothing retailers in particular suggested a possible weather effect.  Many retailers launch their spring/summer ranges in March and a cold month such as March 2013 (the second coldest March on record) may reduce demand for spring/summer clothing.  In contrast, March 2014 was warmer than average, with a very warm dry spell in the middle of the month. 

In March 2014, the quantity bought in household goods stores increased by 9.2% compared with March 2013; the amount spent increased by 8.5% in the same period.  These year-on-year increases are the largest since July 2007 when the quantity bought increased by 10.8% and the amount spent by 8.9%.  This may also reflect a weather effect, as sales fell by 6.5% month-on-month in March 2013 and also fell more sharply than other areas of retail in previous months with heavy snow.  Additionally, household goods stores were the only type of store to report a year-on-year decrease in proportion of sales made online in March 2014, which implies the effect on physical stores was even greater than the overall sales increase.


 

Distribution Analysis

Table 2 illustrates the mix of experiences among different sized retailers. It shows the distribution of reported change in sales values of businesses in the RSI sample, ranked by size of business (based on number of employees). It shows that businesses with 0-9 employees saw the largest growth in the amount spent comparing March 2014 with March 2013, while large stores experienced weaker growth in the amount spent at 0.2%.

Table 2: Changes in reported retail sales values between March 2013 and March 2014 standard reporting periods (by size of business)

Number of employees Weights (%) Growth since March 2013 (%)
100+ 77.7 0.2
40-99 2.1 -7.0
10-39 6.8 6.1
0-9 13.4 16.5

Download table

More information on the performance of the retail industry by store type and size can be found in the reference table, Business Analysis (25.5 Kb Excel sheet) , which shows the extent to which individual businesses reported actual changes in their sales between March 2013 and March 2014. The table contains information only from businesses that reported in March 2013 and March 2014. Cells with values less than 10 are suppressed for some classification categories; this is denoted by c. Note that ‘large’ businesses are defined as those with 100+ employees and 10–99 employees with annual turnover of more than £60 million, while ‘small and medium’ is defined as 0–99 employees.

Amount Spent in the Retail Industry

In the March 2014 five week reporting period, the amount spent in the retail industry was £33.7 billion (non-seasonally adjusted). This compares with £26.1 billion in the four week reporting period for February 2014 and £32.8 billion in the five week reporting period for March 2013.

This equates to an average weekly spend of £6.7 billion in March 2014, £6.5 billion in February 2014 and £6.6 billion in March 2013.

Sector Summary

Key Points

  • All sectors except food stores showed increases in the quantity bought year-on-year.  The 2.3% decrease in the quantity bought in food stores was the largest decrease since April 2013 (2.9%).

  • The year-on-year increase in both the quantity bought (9.2%) and amount spent (8.5%) in household goods stores was the highest since July 2007.

  • Downwards pressure to average store prices came from non-specialised stores, household goods stores, other stores, non-store retailing and fuel stores. 

  • Food stores and textiles, clothing & footwear stores saw average prices rise in comparison with March 2013.

Table 3: Sector Summary, March 2014

    Percentage change over 12 months   Average weekly sales (£ billion)
    Quantity bought (volume)  Amount spent (value)  Average store price 
Predominantly food stores¹ -2.3 0.1 1.8 2.8
Predominantly non-food stores² 9.6 8.8 -0.7 2.7
Non-specialised stores³ 11.3 10.0 -1.2 0.5
Textiles, clothing & footwear stores 7.1 7.3 0.3 0.8
Household goods stores 9.2 8.5 -0.4 0.6
Other stores 10.9 9.7 -1.2 0.8
Non-store retailing 10.4 9.1 -1.3 0.5
Fuel stores 4.1 -2.2 -5.8 0.8
Total   4.2 3.9 -0.5 6.7

Table notes:

  1. Supermarkets, specialist food stores and sales of alcoholic drinks & tobacco.
  2. Non-specialised stores, textiles, clothing &  footwear, household goods and other stores.
  3. Department stores.

Download table

Note: more information on how average store prices are calculated can be found in the quick guide to retail sales or in the background notes.

Internet Sales in Detail

Seasonally adjusted Internet sales data are provided within this release. These seasonally adjusted estimates are published in the RSI tables (187 Kb Excel sheet) and include:

  • A seasonally adjusted value index; and 

  • Year-on-year and month-on-month growth rates.

Internet sales are estimates of how much was spent online through retailers across all store types in Great Britain. The reference year is 2010=100.

Key Points

  • Average weekly spending online in March 2014 was £680.3million. This was an increase of 7.1% compared with March 2013. 

  • The amount spent online accounted for 10.7% of all retail spending excluding automotive fuel, compared with 10.5% in March 2013. 

  • The online spend in department stores increased by 22.2% year-on-year but decreased by 8.2% in household goods stores.

Table 4 shows the year-on-year growth rates for total Internet sales by sector and the proportion of sales made online in each retail sector. 

Table 4: Summary of Internet Statistics for March 2014 (seasonally adjusted)

Category Year on year growth %  Proportion of total sales  made online
All retailing 7.1 10.7
All food 13.6 3.7
All non-food 4.9 8.5
  Department stores 22.2 9.8
  Textile, clothing & footwear stores 4.4 10.5
  Household goods stores -8.2 5.7
  Other stores 0.2 7.5
Non-store retailing 6.7 67.8

Download table

Background notes

  1. Future Improvements

    ONS previously announced the intention of a consultation exercise on new reference tables by the end of March.  ONS is currently quality assuring these tables and will update users in due course.

  2. What’s New

    We have included seasonally adjusted estimates of the proportions of sales made online for the first time this month.  These statistics are published in the reference tables (187 Kb Excel sheet) which contain all Internet sales statistics available.

    Revisions to the Retail Sales Index (100 Kb Pdf) detailing why revisions to the non-seasonally adjusted and seasonally adjusted data can occur was published on 4 April 2014.

  3. Understanding the data

    1. Statistical Special Events

    Flooding and storms have produced localised damage and disruption in parts of the UK.  Retail sales estimates for January and February 2014 are thought to be minimally affected by these conditions, which have not been designated as a statistical Special Event.  ONS maintains a list of candidate special events in the Special Events Calendar. There were several special events in 2012. In addition, ONS is keeping the effects of the weather in January and February 2014 under review in line with the ONS Special Events policy. More information can be found in the report on Adverse weather conditions in December 2013 and January and February 2014 (49.9 Kb Pdf) published 27 March 2014. As explained in ONS’s Special Events policy, it is not possible to separate the effects of special events from other changes in the series.

    2. Quick Guide to the Retail Sales Index

    A Quick Guide to the Retail Sales Index (117.1 Kb Pdf)

    3. Interpreting the data

    • The Retail Sales Index (RSI) is derived from a monthly survey of 5,000 businesses in Great Britain. The sample represents the whole retail sector and includes the 900 largest retailers and a representative panel of smaller businesses. Collectively all of these businesses cover approximately 90 per cent of the retail industry in terms of turnover.

    • The RSI covers sales only from businesses classified as retailers according to the Standard Industrial Classification 2007 (SIC 2007), an internationally consistent classification of industries. The retail industry is division 47 of the SIC 2007 and retailing is defined as the sale of goods to the general public for household consumption. Consequently, the RSI includes all Internet businesses whose primary function is retailing and also covers Internet sales by other British retailers, such as online sales by supermarkets, department stores and catalogue companies. The RSI does not cover household spending on services bought from the retail industry as it is designed to only cover goods. Respondents are asked to separate out the non-goods elements of their sales, for example income from cafeterias. Consequently, online sales of services by retailers, such as car insurance, would also be excluded.

    • The monthly survey collects two figures from each sampled business: the total turnover for retail sales for the standard trading period, and a separate figure for sales made over the Internet. The total turnover will include Internet sales. The separation of the Internet sales figure allows an estimate relating to Internet sales to be calculated separately.

    4. Definitions and explanations

    • The value or current price series records the growth of the value of sales ‘through the till’ before any adjustment for the effects of price changes.

    • The volume or constant price series are constructed by removing the effect of price changes from the value series. The Consumer Prices Index (CPI) is the main source of the information required on price changes. In brief, a deflator for each type of store (5-digit SIC) is derived by weighting together the CPI components for the appropriate commodities, the weights being based on the pattern of sales in the base year. These deflators are then applied to the value data to produce volume series.

    • The implied deflator or the estimated price of goods is derived by dividing the non-seasonally adjusted value and volume data to leave a price relative. In general, this implied price deflator should be quite close to the retail component of the CPI. More information on the implied price deflator can be found in the Quick Guide to Retail Sales (117.1 Kb Pdf) .

    5. Use of the data

    The value and volume measures of retail sales estimates are widely used in private and public sector organisations both domestically and internationally. For example, private sector institutions such as investment banks, the retail industry itself and retail groups use the data to inform decisions on the current economic performance of the retail industry. These organisations are most interested in a long term view of the retail sector that can be obtained from year-on-year growth rates. Public sector institutions use the data to assist in informed decision and policy making and tend to be most interested in a snapshot view of the retail industry, which is taken from the month-on-month growth rates.

    The Retail Sales Index feeds into estimates of gross domestic product in two ways.  Firstly it feeds into the services industries when GDP is measured from the output approach.  Secondly it is a data source used to measure household final consumption expenditure which feeds into GDP estimates when measured from the expenditure approach.

    The data feed into the first (or preliminary) estimate of GDP; the second estimate of GDP and the third estimate which is published in the Quarterly National Accounts.

  4. Methods

    Information on retail sales methodology is available.

    1. Composition of the data

    Estimates in this statistical bulletin are based on financial data collected through the monthly Retail Sales Inquiry. The response rates for the current month reflect the response rates at the time of publication. Late returns for the previous month’s data are included in the results each month. Response rates for historical periods are updated to reflect the current level of response at the time of this publication.

    Table 5: Overall Response Rates

    Period Overall response rates (%)
    Turnover Questionnaire
    2014 Mar 91.9 59.4
    Feb  98.7 76.4
    Jan 99.1 79.1
    2013 Dec 99.0 79.1

    Download table

    2. Seasonal adjustment

    Seasonally adjusted estimates are derived by estimating and removing calendar effects (for example Easter moving between March and May) and seasonal effects (for example increased spending in December as a result of Christmas) from the non-seasonally adjusted (NSA) estimates. Seasonal adjustment is performed each month, and reviewed each year, using the standard, widely used software, X-12-ARIMA. Before adjusting for seasonality, prior adjustments are made for calendar effects (where statistically significant), such as returns that do not comply with the standard trading period (see section Methods, Calendar effects), bank holidays, Easter and the day of the week on which Christmas occurs.

    The data collected from the retail sales survey estimate the amount of money taken through the tills of retailers; these are non-seasonally adjusted data. These data consist of three components:

    • trend which describes long-term or underlying movements within the data

    • seasonal which describes regular variation around the trend, that is peaks and troughs within the time series, the most obvious in this case being the peak in December and the fall in January

    • irregular or ‘noise’, for example deeper falls within the non-seasonally adjusted series due to harsh weather impacting on retail sales

    To ease interpretation of the underlying movements in the data, the seasonal adjustment process estimates and removes the seasonal component to leave a seasonally adjusted time series consisting of the trend and irregular components.

    In the non-seasonally adjusted RSI we see large rises in December each year and a fall in the following January, but these are not evident in the seasonally adjusted index. This peak in December is larger than the subsequent fall but the trend and irregular components in both months are likely to be similar, meaning that the movements in the unadjusted series are almost completely as a result of the seasonal pattern.

    3.  Calendar effects

    The calculation of the RSI has an adjustment to compensate for calendar effects that arise from the differences in the reporting periods. The reporting period for March 2014 was 2 March 2014 to 5 April 2014, compared with 24 February 2013 to 30 March 2013 the previous year. Table 6 shows the differences between the calendar and seasonally adjusted estimates.

    Table 6: Retail Sales, Calendar Effects

    Year on year percentage change
      Value Volume
    Calendar adjusted 2.9 3.3
    Seasonally adjusted 3.9 4.2

    Download table



  5. Quality

    1. Basic quality information

    • The standard reporting periods can change over time due to the movement of the calendar. Every five or six years the standard reporting periods are brought back into line by adding an extra week. For example, January is typically a four-week standard period but January 1986, 1991, 1996, 2002, 2008 and 2014 were all five-week standard periods. The non-seasonally adjusted estimates will still contain calendar effects. If the non-seasonally adjusted estimates are used for analysis this can lead to a distortion depending on the timing of the standard reporting period in relation to the calendar, previous reporting periods and how trading activity changes over time.

    • The non-seasonally adjusted series contain elements relating to the impact of the standard reporting period, moving seasonality and trading day activity. When making comparisons it is recommended that users focus on the seasonally adjusted estimates as these have the systematic calendar related component removed. Due to the volatility of the monthly data, it is recommended that growth rates are calculated using an average of the latest three months of the seasonally adjusted estimates.

    • When interpreting the data, consideration should be given to the relative weighted contributions of the sectors within the all retailing series. Based on SIC 2007 data, total retail sales consists of: predominantly food stores 41.5%, predominantly non-food stores 41.3%, non-store retailing 5.7% and automotive fuel 11.5%.

    2. Standard errors

    Standard errors of non-seasonally adjusted chained volume index movements have been developed for RSI to determine the spread of possible movements and a means of assessing the accuracy of the non-seasonally adjusted month-on-month and year-on-year estimates of all retail sales volumes.  The lower the standard error, the more confident one can be that the estimate is close to the true value for the retail population.

    • The standard error for year-on-year growth in all retail sales (non-seasonally adjusted) volumes is 0.9%. This means that the year-on-year growth rate for all retail sales volumes (non-seasonally adjusted) falls within the range 3.1 ± 1.8 percentage points with a probability of 95%.

    • The standard error for month-on-month growth in all retail sales (non-seasonally adjusted) volumes is 0.5%. This means that the month-on-month growth rate for all retail sales volumes (non-seasonally adjusted) falls within the range 2.9 ± 1.0 percentage points with a probability of 95%.

    The papers ‘ Measuring the accuracy of the Retail Sales Index’ (1.04 Mb Pdf) , Winton, J and Ralph, J (2011) and ‘ Updated accuracy measures for the Retail Sales Index (29.6 Kb Pdf) ’ Sanderson, R (2013) report on the calculation of standard errors for month-on-month and year-on-year growth rates in the RSI as well as providing an overview of standard errors and how they can be interpreted.

    3. Summary quality report

    A Summary Quality Report (114 Kb Pdf) for the RSI. 

    This report describes, in detail the intended uses of the statistics presented in this publication, their general quality and the methods used to produce them.

    4. Revisions triangles

    Revisions to data provide one indication of the reliability of key indicators. The table below shows summary information on the size and direction of the revisions made to the volume data covering a five-year period. Note that changes in definition and classification mean that the revision analysis is not conceptually the same over time.

    Table 7: All Retailing, Volume Seasonally Adjusted, Revisions Triangles Summary Statistics, March 2014

    Volume seasonally adjusted

      Growth in latest period (per cent) Revisions between first publication and estimates twelve months later (percentage points)
    Average over the last five years (mean revision) Average over the last five years without regard to sign (average absolute revision)
    Latest three months compared with previous three months   0.8 -0.27 0.36
    Latest month compared with previous month   0.1 -0.13 0.40
     

    Download table

    A spreadsheet giving these estimates and the calculations behind the averages in the table is available on the ONS website.

  6. Publication Policy

    Details of the policy governing the release of new data are available from the Media Relations Office. Also available is a list of the organisations given pre-publication access to the contents of this bulletin.

    Accessing data

    The complete run of data in the tables of this statistical bulletin is available to view and download in electronic format using the ONS Time Series Data service. Users can download the complete bulletin in a choice of zipped formats, or view and download their own sections of individual series. The Time Series Data can be accessed.

    Alternatively, for low-cost tailored data call 0845 601 3034 or email info@ons.gsi.gov.uk

    Next publication : Wednesday 21 May 2014
    Issued by: Office for National Statistics, Government Buildings, Cardiff Road, Newport NP10 8XG

    Media contact:
    Tel Media Relations Office: 0845 6041858
    Emergency on-call: 07867 906553
    Email:  media.relations@ons.gsi.gov.uk

    Statistical contact:
    Tel: Pete Lee 01633 455602
    Email: retail.sales.enquiries@ons.gsi,gov.uk

    Contact us:
    Tel: 0845 601 3034
    Email: info@ons.gsi.gov.uk
    Website: www.ons.gov.uk
    Twitter  

  7. Details of the policy governing the release of new data are available by visiting www.statisticsauthority.gov.uk/assessment/code-of-practice/index.html or from the Media Relations Office email: media.relations@ons.gsi.gov.uk

    These National Statistics are produced to high professional standards and released according to the arrangements approved by the UK Statistics Authority.

Statistical contacts

Name Phone Department Email
Pete Lee +44 (0)1633 455602 ONS retail.sales.enquiries@ons.gsi.gov.uk
Get all the tables for this publication in the data section of this publication .
Content from the Office for National Statistics.
© Crown Copyright applies unless otherwise stated.