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1. Introduction 
 
A basic requirement of any estimate is a measure of its precision or uncertainty.  This is typically 
provided by estimates of variance and associated confidence intervals.  Derivation of 
computationally and statistically efficient1 estimates of the variance of the coverage adjustment 
estimates is therefore crucial for the evaluation of these estimates.  Variance estimates provide 
information on their level of accuracy and 95% confidence intervals will allow them to be 
appropriately compared to external population estimates. 
 
The paper outlines the work undertaken to explore and evaluate an appropriate variance estimation 
methodology for use in the 2011 Census. As in 2001, these methods will provide the basis for 
obtaining confidence intervals for the primary estimates obtained from the coverage assessment 
methodology: Local Authority estimates by age-sex groups.  However, the estimation process does 
not in general provide direct LA level estimates, as in most cases we group LAs into Estimation 
Areas to ensure sample sizes are sufficient for ratio estimation. Therefore in the first instance we 
discuss variance estimation at the Estimation Area level.  The paper provides a comparison of the 
variance estimation methodology used in 2001 alongside an implementation of the bootstrap re-
sampling method. The research presented provides the foundation for developing a Local Authority 
level variance estimation methodology. 
 
2. Background 
 
2.1 Variance Estimators 
An important measure of a “good” variance estimator is consistency.  This means that for repeated 
samples the estimator converges to the ‘true’ value of the parameter of interest (Wolter, 2007).  
Equally, confidence intervals derived from the variance estimation methodology should have good 
coverage probabilities.  For example, for a 95% interval, over repeated samples, 95% of the 
estimated intervals will contain the true value of the estimate.  These two characteristics may 
sometime conflict in that the variance estimator with the optimal coverage characteristics may not 
be consistent, and vice versa.  The chosen estimator may therefore need to be based on a 
compromise between these characteristics.  The choice of estimator should also include 
consideration of its ease of calculation.  This is particularly important for more recently developed 
estimators that use computationally intensive methods which can have a high time overhead.  If two 
estimators have similar properties the simpler method should be chosen to ensure the wider user 
community will have a clearer understanding and acceptance of the methodology. 
  
For variance estimation in the 2011 Census a number of approaches can be considered and have 
been investigated: (i) The jack-knife approach, similar to 2001 approach, adjusted for the revised 
Census Coverage Study (CCS) sample design; and (ii) the bootstrap method. The jack-knife and 
bootstrap are described below. 
 
2.1.1 The Jack-knife 
In 2001 the jack-knife approach was applied, stratified by hard-to-count group within Estimation 
Area.  Symmetric 95% Confidence intervals were then derived using the standard errors estimated 
                                                 
1 Computational efficiency refers to the time and volume of computing resource required to produce a variance 
estimate.  Statistical efficiency refers to whether the variance estimate of the parameter of interest is estimated in the 
best possible way with respect to specified criteria such as confidence interval width and coverage.  



using this approach based on the assumption of a normally distributed estimator.  An important 
point to note about these intervals is that they are not bounded by the Census count and therefore 
some intervals went below this theoretical lower bound.  This theoretical lower bound does assume 
that there are negligible levels of over-count in the Census counts and this will not be a lower bound 
in circumstances with high levels of over-count. 
  
2.1.2 The Bootstrap 
The bootstrap method (Efron & Tibshirani, 1993; Wolter, 2007) has been developed to estimate the 
variance and confidence intervals of complex estimators, often derived from multistage survey 
samples. An advantage of the bootstrap method is that, at least in summary,  it provides an easily 
understood methodology for the non-technical user.  The method provides empirical variance 
estimates as well as empirical confidence intervals based on the empirical distribution of estimates 
over repeated sample replicates.  These confidence intervals are based on an empirically derived 
sampling distribution and therefore do not make an assumption of normality.  They are therefore 
potentially non-symmetric and so can provide appropriately bounded confidence intervals.  
However, to be able to adequately define the bounds for these intervals the replication has to be 
relatively large to ensue enough of the replicates provide an appropriate level of information to 
define the confidence interval bounds.  For example, for 1000 replicates one would expect only 25 
of these to be above and 25 to be below the 2.5% cut point on the empirical distribution that defines 
the 95% confidence bounds. 
 
As Efron and Tibshirani (1993) note the distribution of θ̂  percentile confidence intervals can be 
used to provide superior nominal coverage levels rates for non-normal estimators.  Both the jack-
knife and bootstrap methods are particularly useful for complex estimators where other standard 
methods, such as Taylor series linearization require complicated derivations to produce a variance 
estimate.  An additional advantage of the bootstrap method for our situation it that it may be 
possible to build an implementation that reruns the full estimation methodology repeatedly.  This 
will allow for inclusion of additional adjustments, such as those for dependence or over-count, as 
integral parts of the variance estimation.  This may provide advantages over the other approaches as 
they would have to estimate each component of variance separately and add them together to 
provide a final variance estimator.   This is basically the approach used for variance estimation at 
the LA level in 2001 where an Estimation Area variance estimate was combined with a residual LA 
variance estimate. 
 
To be able to define the variance and confidence intervals for totals the full variance-covariance 
matrix of the age-sex specific groups is required as the total is defined by the sum of the age-sex 
estimates.  In this paper, each method has been extended to provide these. 
 
2.2 Previous Research 
Initial research comparing a bootstrap and jack-knife approach concluded that the bootstrap showed 
promise and has the potential to easily incorporate estimation at the LA level, as well as national 
adjustments such as those that are likely to be made for dependence and over-count (Baillie et al 
2010). However, there were three main issues that required further consideration: 
 

1. The jack-knife estimator is, in general, tracking the empirical variance closely. This 
confirmed simulation results from 2001 (Brown, 2000). The initial bootstrap estimator is, in 
general, over-estimating compared to the empirical variance. This then results in over-
stating the relative standard error of estimates. 

 
2. The resulting 95% confidence intervals from the jack-knife tend to have coverage around or 

just under 95%, again confirming results from 2001. However, the over-estimation of the 



variance using the bootstrap feeds through to 95% confidence intervals with coverage 
consistently in excess of 95%. 

 
3. The bootstrap approach also allows for the construction of empirical confidence intervals 

based on the bootstrap distribution. These have even higher coverage and there is the issue 
of correcting bias in the bootstrap distribution as well as the acceptability of non-symmetric 
confidence intervals. 

 
This paper outlines the research undertaken to resolve these issues, and outlines the remaining 
work. 
 
 
3.  Over-Estimation with the Bootstrap 
 
To implement the bootstrap we first create a pseudo-population by re-sampling with replacement 
from the CCS sampled areas. In the previous work by Baillie et al (2010) we sampled output areas 
(OAs) with replacement and then sampled from the selected postcodes with replacement to build 
the within OA populations. From this pseudo-population we then repeatedly applied the CCS 
sample design to generate the set of bootstrap estimates, and then the variance estimate and 
confidence interval. However, this second stage is not required because the dual-system estimate 
produced for each sampled OA encapsulates the within PSU variability. Using the variation 
between estimates at the OA level therefore captures both the between and within variability, so 
adding this extra variation by re-sampling within the OAs will tend to over-estimate the variance 
(Wolter, 2007). The same argument is used with the ultimate-cluster variance estimator; this just 
considers variation between the sampled PSUs as variation between estimates at the PSU level 
captures both the variation within the PSU feeding in to each PSU estimate as well as true variation 
between the PSUs. 
 
As in the previous work, a simulation study is used to evaluate the performance of the variance 
estimators. Results from creating the pseudo-population by just re-sampling OAs and fixing the 
within OA sample of postcodes results in the bootstrap variance estimator tracking the empirical 
variance even more closely than the jack-knife approach. This can be seen in Table 1 and Figure 1, 
which compare the bias of the original 2-stage bootstrap with the revised bootstrap and the jack-
knife. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Variance estimates for 5 EAs comparing the jack-knife with the single and two-stage bootstrap methods. 

EA METHOD VARIANCE ESTIMATE 
KK SIMULATION 30,433,847 
 JACK-KNIFE 33,012,073 
 BOOTSTRAP 95% 29,643,367 
 2-STAGE BOOTSTRAP 95% 51,542,906 
   
KO SIMULATION 19,683,414 
 JACK-KNIFE 21,418,196 
 BOOTSTRAP 95% 19,468,872 
 2-STAGE BOOTSTRAP 95% 34,301,484 
   
LB SIMULATION 167,990,994 
 JACK-KNIFE 184,929,344 
 BOOTSTRAP 95% 176,120,843 
 2-STAGE BOOTSTRAP 95% 300,476,386 
   
SH SIMULATION 16,837,951 
 JACK-KNIFE 16,916,600 
 BOOTSTRAP 95% 17,452,585 
 2-STAGE BOOTSTRAP 95% 32,322,299 
   
NA SIMULATION 15,190,457 
 JACK-KNIFE 18,267,049 
 BOOTSTRAP 95% 19,716,529 
 2-STAGE BOOTSTRAP 95% 35,434,868 
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Figure 1. Summary plot of the variance estimates for KK. The simulation variance (‘truth’), jack-knife and 
bootstrap mean estimates by age sex group are displayed. For comparison, the previous two-stage Bootstrap is 
also presented. 



Table 2 and Figure 2 evaluate the coverage of confidence intervals derived from the alternative 
variance estimators. 
 

Table 2. Coverage of the jack-knife and bootstrap. A number of bootstrap confidence intervals were 
implemented and compared. 

EA METHOD CI COVERAGE 
KK SIMULATION  
 JACK-KNIFE 95 
 BOOTSTRAP 95% 94.75 
 BS BC 95.75 
 BS EMP 94 
 BS Approx T 95 
 BCa 94.25 
   
KO SIMULATION  
 JACK-KNIFE 93 
 BOOTSTRAP 95% 91.75 
 BS BC 92.5 
 BS EMP 91.75 
 BS Approx T 92.25 
 BCa 91.75 
   
LB SIMULATION  
 JACK-KNIFE 92.75 
 BOOTSTRAP 95% 92.75 
 BS BC 93.75 
 BS EMP 93.5 
 BS Approx T 92.75 
 BCa 92.25 
   
SH SIMULATION  
 JACK-KNIFE 90.25 
 BOOTSTRAP 95% 91 
 BS BC 92.25 
 BS EMP 92.75 
 BS Approx T 92 
 BCa 91.75 
   
NA SIMULATION  
 JACK-KNIFE 94 
 BOOTSTRAP 95% 94.75 
 BS BC 96 
 BS EMP 95.75 
 BS Approx T 96 
 BCa 95.75 
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Figure 2. Coverage of the simulation population truth using jack-knife and bootstrap 95% CI. Summarised by 
age sex group. 

 
 
4. Constructing 95% Confidence Intervals 
 
The slight reduction in the bootstrap variance estimator now leads to standard +/-1.96  based 95% 
confidence intervals (i.e. Z is approximately distributed to the Normal distribution with zero mean 
and unit variance) that have similar coverage to the jack-knife. In other words, we can now recover 
similar performance to the 2001 approach with the advantage of bootstrapping for things like LA 
level estimates. However, like the jack-knife approach, the coverage of the 95% confidence 
intervals tend to be just below the 95% level.  
 
The above assumption is valid as the sample size tends to infinity but is only an approximation 
when the sample size is small and/or finite. A simple additional correction is to recognise that we 
should be using the t-distribution rather than a standard normal e.g.  
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In other words, Z is approximately distributed to the t-distribution with n-1 degrees of freedom. 
Work by (DiCiccio and Efron, 1996) look at using a simulation within the bootstrap to get the 
correct t-distribution. A second bootstrap simulation is required to estimate the standard error for 
each of the parent bootstrap re-samples. For small finite samples results indicate this is a better 
approximation than using the standard normal distribution.  
 
We explored this method using a t-distribution with n-1 degrees of freedom, where n is the number 
of OAs sampled within the estimation area. For a sample size of 45 OAs, this would be around 2.01 



for the confidence interval rather than the standard 1.96. The adjustment is small but the loss of 
coverage is also small. This adjustment can also be applied to the jack-knife confidence intervals. 
 
Using the empirical distribution to produce the confidence interval is an attraction of the bootstrap. 
Related research indicates that both 95% Normal approximation and Bootstrap-t intervals have 
good theoretical coverage but can tend to be erratic in practice. Additionally, as discussed above, 
often no statistical formula is available to estimate the standard error for the parameter of interest 
therefore a double bootstrap routine is required increasing processing time exponentially.  
 
Percentile or empirical confidence intervals are simpler to use and are assumed to be more robust 
but comparisons with exact intervals highlight that these intervals can provide poor coverage in 
certain cases. There are two main reasons why: (i) bootstrap estimates are biased with respect to the 
original estimate, and (ii) the standard error varies with the value of the estimate (e.g. for each 
bootstrap resample we will have a different standard error estimate). In small samples the percentile 
method, which simply uses the alpha/2 and 1-alpha/2 percentiles of the bootstrap distribution to 
define the interval, performs well with an unbiased estimator. However, coverage can be affected 
when applied to a biased estimator.  
 
The Bias Corrected and Accelerated (BCa) interval (Efron, 1987) was designed to address both 
issues. The Bias component is estimated as a median bias; a systematic under or overestimation of 
the original sample estimate θ  when calculated through with each of the B bootstrap re-samples e.g 

*
bθ . Therefore the bias component is estimated by: 
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This is essentially the proportion of bootstrap resamples whose estimate of the parameter of interest 
is less than the full sample estimate of that statistic. This proportion is entered into the inverse of the 
standard normal distribution e.g. 96.1)975.0(1 =Φ− .  
 
The acceleration or skew component â  is an estimate of the rate of change of the standard error of 
the parameter of interest with respect to the true value of the statistic. This provides an estimate of 
the influence of each sample observation as well as how the empirical bootstrap distribution skews 
from an idealised normal distribution.  
 
To estimate the acceleration value, a jack-knife simulation can be used, removing one sample point 
in turn. 
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iθ̂ is the jack-knife estimator of the parameter of interest with the i-th observation removed and .̂θ  is 

the mean of the jack-knife samples for a single bootstrap sample b.  
 
Given an estimate for both quantities a BCa confidence interval is constructed as follows: 
 



I. For a 95% CI set 025.0=α  
II. Calculate: 
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III. Calculate: 
a. 11 α×= BN  
b. 22 α×= BN  

IV. Take the 1N  and 2N ordered bootstrap sample estimates as the lower and upper confidence 
limits.  

 
This approach has been implemented in a set of Estimation Areas and is now leading to good 
coverage for the empirical confidence intervals (see Appendix for results for some estimation 
areas).  Based on the findings of this research we will implement BCa confidence intervals derived 
from the application of the bootstrap.  This allows us to retain flexibility in how the confidence 
bounds are calculated.  Our default strategy will be to implement the asymmetric confidence bounds 
described above.  
 
 
5. Publishing Confidence Intervals 
 
One advantage of the bootstrap approach is that, based on the empirical distribution, the confidence 
bounds do not have to be assumed to be symmetric, as was assumed in the 2001 method.  Therefore 
more appropriate asymmetric confidence bounds can be derived as they appropriately reflect the 
confidence associated with the estimates given they will be bounded by the Census count.  For areas 
with moderate to high levels of undercount these confidence bounds will be approximately 
symmetric.  They will only be asymmetric when the estimated undercount rate is small. We will use 
these asymmetric confidence intervals for the Census Quality Assurance process and for all census 
outputs.  Information notes will be provided with these confidence bounds to ensure their 
appropriate use and interpretation. 
   
However, many users may not be used to seeing non-symmetric confidence bounds and therefore 
we need to ensure that the associated notes deal with any concerns or potential misunderstanding.  
We will look at best practice to try to achieve this. We may also wish to test our notes with some 
users in advance of the first release publication, and prepare briefing material for those who will be 
presenting the results/answering questions. 
 
 
6. Remaining work 
 
Given the revised bootstrap approach is performing consistently, performance at the LA level needs 
to be considered. Work is ongoing to simulate and implement this. 
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